Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Interleukin-6 stimulates alpha-MG uptake in renal proximal tubule cells: involvement of STAT3, PI3K/Akt, MAPKs, and NF-kappaB.

Recent studies have shown that interleukin 6 (IL-6) acts on the cellular proliferation-activating transduction signals during cellular regeneration. Therefore, this study examined the effect of IL-6 on the activation of Na(+)/glucose cotransporters (SGLTs) and its related signaling pathways in primary cultured renal proximal tubule cells (PTCs). IL-6 increased the level of alpha-methyl-d-[(14)C]glucopyranoside (alpha-MG) uptake in time- and dose-dependent manners. IL-6 also increased SGLT1 plus SGLT2 mRNA and protein expression level. The IL-6 receptors (IL-6Ralpha and gp 130) were expressed in PTCs. In addition, genistein and herbimycin A completely blocked the IL-6-induced increases in alpha-MG uptake and the protein expression level of SGLTs. On the other hand, IL-6 increased the level of 5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate-sensitive cellular reactive oxygen species (ROS), and IL-6-induced increases in alpha-MG uptake and the protein expression level of SGLTs were blocked by ascorbic acid or taurine (antioxidants). IL-6 also increased the phosphorylation of signal transducer and activator of transcription-3 (STAT3), phosphoinositide-3 kinase (PI3K)/Akt, and mitogen-activated protein kinases (MAPKs) in a time-dependent manner. A pretreatment with STAT3 inhibitor LY 294002, an Akt inhibitor, or MAPK inhibitors significantly blocked the IL-6-induced increase in alpha-MG uptake. In addition, IL-6 increased the level of nuclear factor-kappaB (NF-kappaB) phosphorylation. A pretreatment with SN50 or BAY 11-7082 also blocked the IL-6-induced increase in alpha-MG uptake. In conclusion, IL-6 increases the SGLT activity through ROS, and its action in renal PTCs is associated with the STAT3, PI3K/Akt, MAPKs, and NF-kappaB signaling pathways.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app