Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

PAR-2 activation regulates IL-8 and GRO-alpha synthesis by NF-kappaB, but not RANTES, IL-6, eotaxin or TARC expression in nasal epithelium.

BACKGROUND: The effects of protease-activated receptor-2 (PAR-2) stimulation on inflammation mechanisms of chronic rhinosinusitis (CRS) are still unknown.

METHODS: PAR-2 receptor expression was investigated by immunohistochemistry and Taqman mRNA analysis in the mucosa of different rhinosinusitis entities. In primary nasal epithelial cell cultures, the function of PAR-2 and its ability to produce CXC, CC chemokines, and IL-6 were measured by calcium mobilization and stimulation tests. Inhibition tests were performed using cortisone, serine protease inhibitors, cysteine protease inhibitors, Pertussis toxin (PTX) and nuclear transcription factor (NF-kappaB) inhibition (BAY 11-7085). Signal transduction pathways were analysed by electromobility shift assays (EMSA) and NF-kappaB binding studies.

RESULTS: The expression of PAR-2 was found to be increased in CRS specimens. The activation of PAR by trypsin or PAR-2-specific activating peptide (AP) caused an increase in cytosolic calcium, as well as the release of the CXC chemokines IL-8 and growth-related oncogene (GRO)-alpha, but not the release of CC chemokines or IL-6. AP-induced CXC chemokine was sensitive to PTX and activation of NF-kappaB was inhibited by BAY11-7085. Furthermore, a serine protease inhibitor significantly inhibited chemokine synthesis stimulated by trypsin and culture supernatants of staphylococci, whereas steroids and cysteine protease inhibitors had little effect.

CONCLUSION: PAR-2 plays a role in serine protease-mediated regulation - staphylococcal and non-staphylococcal origin - of IL-8 and GRO-alpha in nasal epithelial cells, but not in the regulation of CC chemokines. PAR-2 may therefore be involved in the pathophysiology of CRS and NP at different sites of activation, namely (i) proteases, (ii) the PAR-2 receptor itself or (iii) the application of novel agents that block NF-kappaB/IkappaB-alpha signalling.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app