JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Mice lacking P2Y2 receptors have salt-resistant hypertension and facilitated renal Na+ and water reabsorption.

Extracellular nucleotides (e.g., ATP) regulate many physiological and pathophysiological processes through activation of nucleotide (P2) receptors in the plasma membrane. Here we report that gene-targeted (knockout) mice that lack P2Y2 receptors have salt-resistant arterial hypertension in association with an inverse relationship between salt intake and heart rate, indicating intact baroreceptor function. Knockout mice have multiple alterations in their handling of salt and water: these include suppressed plasma renin and aldosterone concentrations, lower renal expression of the aldosterone-induced epithelial sodium channel alpha-ENaC, greater medullary expression of the Na-K-2Cl-cotransporter NKCC2, and greater furosemide-sensitive Na+ reabsorption in association with greater renal medullary expression of aquaporin-2 and vasopressin-dependent renal cAMP formation and water reabsorption despite similar vasopressin levels compared with wild type. Of note, smaller increases in plasma aldosterone were required to adapt renal Na+ excretion to restricted intake in knockout mice, suggesting a facilitation in renal Na+ retention. The results thus identify a previously unrecognized role for P2Y2 receptors in blood pressure regulation that is linked to an inhibitory influence on renal Na+ and water reabsorption. Based on these findings in knockout mice, we propose that a blunting in P2Y2 receptor expression or activity is a new mechanism for salt-resistant arterial hypertension.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app