Journal Article
Review
Add like
Add dislike
Add to saved papers

Brain monitoring and protection during pediatric cardiac surgery.

With advances in medical care, survival after cardiac surgery for congenital heart disease has dramatically improved, and attention is increasingly focused on long-term functional morbidities, especially neurodevelopmental outcomes, with their profound consequences to patients and society. There are multiple reasons for concern about brain injury. Some cardiac defects are associated with brain anomalies and altered cerebral blood flow regulation. Brain imaging studies have demonstrated that injury to gray and white matter is quite frequent before heart surgery in neonates. Cardiopulmonary bypass and deep hypothermic circulatory arrest are associated with short- and longer-term adverse neurologic outcome. Additional brain injury can occur during the patient's recovery from surgery. Strategies to optimize neurologic outcome continue to evolve. With new technological developments, perioperative neurologic monitoring of small children has become easier, and data suggest these modalities usefully identify adverse neurologic events and might predict outcome. Monitoring methods to be discussed include processed electroencephalography, near infrared spectroscopy, and transcranial Doppler ultrasound. Alternative perfusion techniques to deep hypothermic circulatory arrest have been developed, such as regional antegrade cerebral perfusion during cardiopulmonary bypass. Other neuroprotective strategies employed during open-heart surgery include temperature regulation, acid-base management, degree of hemodilution, blood glucose control and anti-inflammatory therapies. Evidence of the impact of these measures on neurologic outcome is examined, and deficiencies in our current understanding of neurologic function in children with congenital heart disease are identified.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app