Add like
Add dislike
Add to saved papers

Inhibition of deoxyribonuclease I by actin is to protect cells from premature cell death.

Deoxyribonuclease I (Dnase1) is the major extracellular endonuclease. It is secreted by digestive glands into the alimentary tract and into the plasma, lacrimal fluid and urine by hepatocytes, lacrimal glands and renal proximal tubular cells, respectively. In many species the activity of Dnase1 is inhibited by monomeric actin. However, the biological significance of this high affinity interaction is unknown. We generated a Dnase1 mutant with extremely reduced actin binding capacity. EGFP-constructs of wild-type and mutant Dnase1 were transfected into MCF-7 breast cancer cells and apoptosis or necrosis was induced by staurosporine or oxidative stress. During apoptosis faster chromatin fragmentation occurred in cells transfected with mutant Dnase1. When wt (wild-type)- or mutated Dnase1 were added to cells after induction of necrosis, faster chromatin degradation occurred in the presence of mutant Dnase1. Inclusion of actin under these conditions inhibited chromatin degradation by wt- but not by mutated Dnase1. Thus, inhibition of Dnase1 by actin may serve as a self-protection mechanism against premature DNA degradation during cell damage.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app