Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Early changes in gene expression that influence the course of primary glomerular disease.

Serial changes in glomerular capillary loop gene expression were used to uncover mechanisms contributing to primary glomerular disease in rat models of passive Heymann nephritis and puromycin nephrosis. Before the onset of proteinuria, podocyte protein-tyrosine phosphatase (GLEPP1) expression was transiently decreased in the nephrosis model, whereas the immune costimulatory molecule B7.1 was stimulated in both models. To relate these changes to the development of proteinuria, the time of onset and intensity of proteinuria were altered. When the models were induced simultaneously, proteinuria and anasarca occurred earlier with the collapse of glomerular capillary loops. Upregulation of B7.1 with the downregulation of GLEPP1, Wilms' tumor gene (WT1), megalin, and vascular endothelial growth factor started early and persisted through the course of disease. In the puromycin and the combined models, changes in GLEPP1 expression were corticosteroid-sensitive, whereas B7.1, WT1, vascular endothelial growth factor, and most slit diaphragm genes involved later in the combined model, except podocin, were corticosteroid-resistant. There was a very early increase in the nuclear expression of podocyte transcription factors ZHX2 and ZHX1 that may be linked to the changes in gene expression in the combined proteinuric model. Our studies suggest that an early and persistent change in mostly steroid-resistant glomerular gene expression is the hallmark of severe and progressive glomerular disease.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app