Add like
Add dislike
Add to saved papers

Brain-derived neurotrophic factor modulates cell excitability in the mouse medial nucleus of the trapezoid body.

Neurotrophins are a large class of trophic factors located throughout the central nervous system. While the role of neurotrophins in neuronal survival and axon guidance is well known, their secondary role in modulating synaptic transmission and cell firing properties is largely unexplored. In this study we examined the expression of neurotrophins in the mouse medial nucleus of the trapezoid body (MNTB) and investigated the effect of exogenous brain-derived neurotrophic factor (BDNF) application on the firing properties of MNTB principal cells. The expression levels of nerve growth factor, BDNF, neurotrophin-3, neurotrophin-4/5 and major receptor tyrosine kinase B was found to be moderate to high at postnatal day 12, indicating that the neurotrophins may have a role following synaptogenesis. A 2-h exposure to exogenous BDNF (100 ng/mL) had a significant effect on principal cell firing properties and voltage-gated potassium currents. Importantly, preincubation in BDNF increased the incidence of multifiring and rebounding cells, and significantly increased the number of action potentials fired in response to a single depolarizing step. BDNF exposure also significantly decreased underlying voltage-gated potassium currents, including both the low- and high-voltage-activated components. Our data show that the neurotrophins, specifically BDNF, may have a novel role in modulating cell excitability in the auditory brainstem.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app