Add like
Add dislike
Add to saved papers

Antitumor effects of vaccination with dendritic cells transfected with modified receptor for hyaluronan-mediated motility mRNA in a mouse glioma model.

OBJECT: The receptor for hyaluronan-mediated motility (RHAMM) is frequently overexpressed in brain tumors and was recently identified as an immunogenic antigen by using serological screening of cDNA expression libraries. In this study, which was conducted using a mouse glioma model, the authors tested the hypothesis that vaccination with dendritic cells transfected with RHAMM mRNA induces strong immunological antitumor effects.

METHODS: The authors constructed a plasmid for transduction of the mRNAs transcribed in vitro into dendritic cells, which were then used to transport the intracellular protein RHAMM efficiently into major histocompatibility complex class II compartments by adding a late endosomal-lysosomal sorting signal to the RHAMM gene. The dendritic cells transfected with this RHAMM mRNA were injected intraperitoneally into the mouse glioma model 3 and 10 days after tumor cell implantation. The antitumor effects of the vaccine were estimated by the survival rate, histological analysis, and immunohistochemical findings for immune cells. Mice in the group treated by vaccination therapy with dendritic cells transfected with RHAMM mRNA survived significantly longer than those in the control groups. Immunohistochemical analysis revealed that greater numbers of T lymphocytes containing T cells activated by CD4+, CD8+, and CD25+ were found in the group vaccinated with dendritic cells transfected with RHAMM mRNA.

CONCLUSIONS: These results demonstrate the therapeutic potential of vaccination with dendritic cells transfected with RHAMM mRNA for the treatment of malignant glioma.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app