EVALUATION STUDY
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

In situ sensing and manipulation of molecules in biological samples using a nanorobotic system.

BACKGROUND: Atomic force microscopy (AFM) is a powerful and widely used imaging technique that can visualize single molecules both in air and solution. Using the AFM tip as an end-effector, an atomic force microscope can be modified into a nanorobot that can manipulate objects in nanoscale.

METHODS: By functionalizing the AFM tip with specific antibodies, the nanorobot is able to identify specific types of receptors on cells' membrane. It is similar to the fluorescent optical microscopy but with higher resolution. By locally updating the AFm image based on interaction force infromation and objects' model during nanomanipulation, real-time visual feedback is obtained through the augmented reality interface.

RESULTS: The development of the AFM-based nanorobotic system will enable us to simultaneously conduct in situ imaging, sensing, and manipulation at nanometer scale (eg, protein and DNA levels).

CONCLUSIONS: This new technology opens a promising way to individually study the function of biological system in molecular level.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app