JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Molecular diagnostics of medically important bacterial infections.

Infectious diseases are common diseases all over the world. A recent World Health Organization report indicated that infectious diseases are now the world's biggest killer of children and young adults. Infectious diseases in non-industrialized countries caused 45% in all and 63% of death in early childhood. In developed countries, the emergence of new, rare or already-forgotten infectious diseases, such as HIV/AIDS, Lyme disease and tuberculosis, has stimulated public interest and inspired commitments to surveillance and control. Recently, it is reported that infectious diseases are responsible for more than 17 million deaths worldwide each year, most of which are associated with bacterial infections. Hence, the control of infectious diseases control is still an important task in the world. The ability to control such bacterial infections is largely dependent on the ability to detect these aetiological agents in the clinical microbiology laboratory. Diagnostic medical bacteriology consists of two main components namely identification and typing. Molecular biology has the potential to revolutionise the way in which diagnostic tests are delivered in order to optimise care of the infected patient, whether they occur in hospital or in the community. Since the discovery of PCR in the late 1980s, there has been an enormous amount of research performed which has enabled the introduction of molecular tests to several areas of routine clinical microbiology. Molecular biology techniques continue to evolve rapidly, so it has been problematic for many laboratories to decide upon which test to introduce before that technology becomes outdated. However the vast majority of diagnostic clinical bacteriology laboratories do not currently employ any form of molecular diagnostics but the use such technology is becoming more widespread in both specialized regional laboratories as well as in national reference laboratories. Presently molecular biology offers a wide repertoire of techniques and permutations of these analytical tools, hence this article wishes to explore the application of these in the diagnostic laboratory setting.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app