JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
Add like
Add dislike
Add to saved papers

Dichloroacetate causes reversible demyelination in vitro: potential mechanism for its neuropathic effect.

Dichloroacetate (DCA) is an investigational drug for genetic mitochondrial diseases whose use has been mitigated by reversible peripheral neuropathy. We investigated the mechanism of DCA neurotoxicity using cultured rat Schwann cells (SCs) and dorsal root ganglia (DRG) neurons. Myelinating SC-DRG neuron co-cultures, isolated SCs and DRG neurons were exposed to 1-20 mm DCA for up to 12 days. In myelinating co-cultures, DCA caused a dose- and exposure-dependent decrease of myelination, as determined by immunolabeling and immunoblotting for myelin basic protein (MBP), protein zero (P0), myelin-associated glycoprotein (MAG) and peripheral myelin protein 22 (PMP22). Partial recovery of myelination occurred following a 10-day washout of DCA. DCA did not affect the steady-state levels of intermediate filament proteins, but promoted the formation of anti-neurofilament antibody reactive whirls. In isolated SC cultures, DCA decreased the expression of P0 and PMP22, while it increased the levels of p75(NTR) (neurotrophin receptor), as compared with non-DCA-treated samples. DCA had modest adverse effects on neuronal and glial cell vitality, as determined by the release of lactate dehydrogenase. These results demonstrate that DCA induces a reversible inhibition of myelin-related proteins that may account, at least in part, for its clinical peripheral neuropathic effects.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app