Add like
Add dislike
Add to saved papers

A hybrid Bacillus thuringiensis delta-endotoxin gives resistance against a coleopteran and a lepidopteran pest in transgenic potato.

Expression of Bacillus thuringiensis delta-endotoxins has proven to be a successful strategy for obtaining insect resistance in transgenic plants. Drawbacks of expression of a single resistance gene are the limited target spectrum and the potential for rapid adaptation of the pest. Hybrid toxins with a wider target spectrum in combination with existing toxins may be used as tool to mitigate these problems. In this study, Desiree potato plants were genetically modified to resist attack by insect species belonging to the orders Coleoptera and Lepidoptera, through the insertion of such a hybrid gene, SN19. Transgenic plants were shown to be resistant against Colorado potato beetle larvae and adults, potato tuber moth larvae, and European corn borer larvae. These are the first transgenic plants resistant to pests belonging to two different insect orders. In addition, the target receptor recognition of this hybrid protein is expected to be different from Cry proteins currently in use for these pests. This makes it a useful tool for resistance management strategies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app