Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Integration and segregation of activity in entorhinal-hippocampal subregions by neocortical slow oscillations.

Neuron 2006 December 8
Brain systems communicate by means of neuronal oscillations at multiple temporal and spatial scales. In anesthetized rats, we find that neocortical "slow" oscillation engages neurons in prefrontal, somatosensory, entorhinal, and subicular cortices into synchronous transitions between UP and DOWN states, with a corresponding bimodal distribution of their membrane potential. The membrane potential of hippocampal granule cells and CA3 and CA1 pyramidal cells lacked bimodality, yet it was influenced by the slow oscillation in a region-specific manner. Furthermore, in both anesthetized and naturally sleeping rats, the cortical UP states resulted in increased activity of dentate and most CA1 neurons, as well as the highest probability of ripple events. Yet, the CA3-CA1 network could self-organize into gamma bursts and occasional ripples during the DOWN state. Thus, neo/paleocortical and hippocampal networks periodically reset, self-organize, and temporally coordinate their cell assemblies via the slow oscillation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app