Add like
Add dislike
Add to saved papers

MDMA induces caspase-3 activation in the limbic system but not in striatum.

Several studies, carried out in chronic (+/-) 3,4-methylenedioxymethamphetamine (MDMA) abusers, have shown memory loss and cognitive impairment, as well as persistent electroencephalographic changes. This suggests that, at least in humans, forebrain areas, including the limbic system, might be altered by MDMA. Consistently, recent experimental evidences suggest that, in rodents, MDMA, besides effects on the basal ganglia, produces alterations in the hippocampus. Therefore, the aim of the present article was to investigate whether treatment with MDMA produces activation of the caspase-3 enzyme, which is part of an enzymatic pathway involved in cell death, within limbic areas (i.e., hippocampus, amygdala, and piriform cortex) and striatum. A marked induction of caspase-3 activity was demonstrated in the amygdala and hippocampus, although MDMA did not affect caspase-3 activity neither in the striatum nor in the frontal cortex. These data indicate that limbic structures possess a high sensitivity to MDMA with respect to the activation of at least one step in the apoptotic pathway. Potential implications and pitfalls of such an experimental observation are reported.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app