JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Combinatorial complexity and dynamical restriction of network flows in signal transduction.

Systems Biology 2005 March
The activities and interactions of proteins that govern the cellular response to a signal generate a multitude of protein phosphorylation states and heterogeneous protein complexes. Here, using a computational model that accounts for 307 molecular species implied by specified interactions of four proteins involved in signalling by the immunoreceptor FcepsilonRI, we determine the relative importance of molecular species that can be generated during signalling, chemical transitions among these species, and reaction paths that lead to activation of the protein tyrosine kinase (PTK) Syk. By all of these measures and over two- and ten-fold ranges of model parameters--rate constants and initial concentrations--only a small portion of the biochemical network is active. The spectrum of active complexes, however, can be shifted dramatically, even by a change in the concentration of a single protein, which suggests that the network can produce qualitatively different responses under different cellular conditions and in response to different inputs. Reduced models that reproduce predictions of the full model for a particular set of parameters lose their predictive capacity when parameters are varied over two-fold ranges.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app