Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

Chemotherapy disrupts activity of translational regulatory proteins in bone marrow stromal cells.

OBJECTIVE: Bone marrow stromal cell function is a critical influence on hematopoietic reconstitution following progenitor or stem cell transplantation. Stromal cells support hematopoietic cell migration, survival, and proliferation. We have previously reported that stromal cell matrix metalloproteinase-2 (MMP-2) is necessary for optimal support of pro-B-cell chemotaxis through its regulation of stromal cell-derived factor-1 (CXCL12) release. Following exposure to the topoisomerase II inhibitor, etoposide (VP-16), stromal cell MMP-2 protein expression is reduced. The current study investigated the mechanism by which VP-16 may alter translation of MMP-2 in bone marrow stromal cells.

MATERIALS AND METHODS: Bone marrow stromal cells were exposed to chemotherapeutic agents etoposide, melphalan, and 4-hydroperoxycyclophosphamide (4HC) and evaluated for MMP-2 expression by enzyme-linked immunosorbent assay and support of pro-B-cell chemotaxis by chemotaxis assay. Western blot analyses were completed to evaluate phosphorylation of stromal cell translational regulatory proteins 4E binding protein-1 (4EBP-1), P70(S6K), and S6 or MMP-2 in the presence of chemotherapy, or the chemical inhibitors rapamycin or LY294002.

RESULTS: Rapid dephosphorylation of 4EBP-1, P70(S6K), and S6 following VP-16 exposure was observed, consistent with blunted translational efficiency. We also observed that inhibition of stromal cell mammalian target of rapamycin with rapamycin, or phosphatidylinositol 3 kinase with LY294002, resulted in inhibition of stromal cell MMP-2 protein. In addition we found that the chemotherapeutic agents melphalan and 4HC disrupt bone marrow stromal cell MMP-2 protein expression and support of chemotaxis.

CONCLUSIONS: These data suggest that one mechanism by which chemotherapy may alter stromal cells of the bone marrow microenvironment is through disrupted translation of proteins.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app