Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Hypolocomotion in rats with chronic liver failure is due to increased glutamate and activation of metabotropic glutamate receptors in substantia nigra.

Journal of Hepatology 2006 November
BACKGROUND/AIMS: Patients with hepatic encephalopathy show altered motor function, psychomotor slowing and hypokinesia. The underlying mechanisms remain unclear. This work's aims were: (1) to analyse in rats with chronic liver failure due to portacaval shunt (PCS) the neurochemical alterations in the basal ganglia-thalamus-cortex circuits; (2) to correlate these alterations with those in motor function and (3) to normalize motor activity of PCS rats by pharmacological means.

METHODS: Extracellular neurotransmitters levels were analysed by in vivo brain microdialysis. Motor activity was determined by counting crossings in open field.

RESULTS: Extracellular glutamate is increased in substantia nigra pars reticulata (SNr) of PCS rats. Blocking metabotropic receptor 1 (mGluR1) in SNr normalizes motor activity in PCS rats. In ventro-medial thalamus of PCS rats GABA is increased and it is normalized by blocking mGluR1 in SNr. Blocking mGluR1 in SNr increases and mGluR1 activation reduces glutamate in motor cortex and motor activity.

CONCLUSIONS: Increased extracellular glutamate and activation of mGluR1 in SNr are responsible for reduced motor activity in rats with chronic liver failure. Blocking mGluR1 in SNr normalizes motor activity in PCS rats, suggesting that, under appropriate conditions, similar treatments could be useful to treat the psychomotor slowing and hypokinesia in patients with hepatic encephalopathy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app