Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Expression and purification of a trivalent pertussis toxin-diphtheria toxin-tetanus toxin fusion protein in Escherichia coli.

Pertussis toxoid, diphtheria toxoid, and tetanus toxoid are key components of diphtheria-tetanus-acellular pertussis vaccines. The efficacy of the vaccines is well documented, however, the vaccines are expensive partly because the antigens are derived from three different bacteria. In this study, a fusion protein (PDT) composed of the immunoprotective S1 fragment of pertussis toxin, the full-length non-toxic diphtheria toxin, and fragment C of tetanus toxin was constructed via genetic means. The correct fusion was verified by restriction endonuclease analysis and Western immunoblotting. Escherichia coli carrying the recombinant plasmid (pCoPDT) produced a 161kDa protein that was recognized by antibodies specific to the three toxins. The expression of the PDT protein was inducible by isopropyl-beta-d-thio-galactoside but the total amount of protein produced was relatively low. Attempts to improve the protein yield by expression in an E. coli strain (Rosetta-gami 2) that could alleviate rare-codon usage bias and by supplementation of the growth media with amino acids deemed to be a limiting factor in translation were not successful. The PDT protein remained in the insoluble fraction when the recombinant E. coli was grown at 37 degrees C but the protein became soluble when the bacteria were grown at 22 degrees C. The PDT protein was isolated via affinity chromatography on a NiCAM column. The protein was associated with five other proteins via disulfide bonds and non-covalent interactions. Following treatment with beta-mercaptoethanol, the PDT fusion was purified to homogeneity by preparative polyacrylamide gel electrophoresis with a yield of 45 microg/L of culture. Antisera generated against the purified PDT protein recognized the native toxins indicating that some, if not all, of the native epitopes were conserved.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app