Add like
Add dislike
Add to saved papers

Approaches to quantifying and visualizing polyelectrolyte multilayer film formation on particles.

Analytical Chemistry 2006 August 16
Colloidal particles prepared by using the layer-by-layer technique are increasingly finding application in diagnostics, drug delivery, and sensing. Herein, we outline methods for applying three established techniques, confocal laser scanning microscopy (CLSM), flow cytometry, and differential interference contrast (DIC) microscopy, to characterize ultrathin films of poly(styrenesulfonate) (PSS) and poly(allylamine hydrochloride) (PAH) assembled on silica particles. Both CLSM and flow cytometry require the use of fluorescently labeled polyelectrolytes (PEs). The film homogeneity can be assessed using CLSM, while flow cytometry allows analysis at unparalleled speed (thousands of particles per second) with unprecedented sensitivity (<0.5 fg of adsorbed polymer) of polydispersed particles of different size ( approximately 300 nm to tens of micrometers). Using CLSM and flow cytometry measurements, in conjunction with quartz crystal microgravimetry measurements on planar supports, allows quantification of PSS/PAH layer buildup on the particles. Furthermore, flow cytometry and DIC microscopy were used to unequivocally distinguish between silica-core PSS/PAH-shell particles and hollow PSS/PAH capsules obtained following core removal. The techniques outlined here are not limited to measuring PE deposition on solid particles but, in principle, are equally applicable to quantifying the adsorption of other materials (such as DNA, proteins, or nanoparticles) on a variety of particulate systems, including hollow capsules, emulsions, and cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app