JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Metal ion modulated organization and function of the Langmuir-Blodgett films of amphiphilic diacetylene: photopolymerization, thermochromism, and supramolecular chirality.

Some novel properties of organized molecular films of 10,12-tricosadiynoic acid (TDA), which were modulated by transition metal ions, were investigated. It was found that metal ions such as Cu(2+), Zn(2+), Ni(2+), Cd(2+), and Ag(+) in the subphase can greatly affect the monolayer formation of TDA and the properties of the subsequently deposited Langmuir-Blodgett (LB) films, particularly in the case of Ag(+), Zn(2+), and Cu(2+) ions. TDA LB film from the subphase containing Ag(+) ion could not be photopolymerized. It was suggested that both the strong chelating property to the carboxylate and the easy reduction of Ag(+) in the film disrupted the topochemical sequence of TDA and resulted in no polymerization in the film. Zinc ion coordinated TDA film could be photopolymerized into a blue polydiacetylene (PDA) film, which showed a reversible thermochromism between blue and purple color upon thermal stimulation. Fourier transform infrared spectra revealed the difference of the Zn(2+)-PDA film from those of the other ions, and the mechanism of the thermochromism was discussed. Copper ion coordinated TDA film could only be photopolymerized to a red PDA film, which showed supramolecular chirality although TDA itself was achiral. Atomic force microscopic measurements revealed the nanofiber structure in the Cu(2+)-PDA film. The supramolecular chirality of the Cu(2+)-PDA film was suggested to be due to the arrangement of the polymer backbone in a helical sense. Furthermore, it was found that the chiral assemblies from the achiral TDA molecules were very stable and the chirality could be kept even upon heating or treating with alkaline solution. While many synthetic efforts have been devoted to the functionalization of PDA films, we provided a simple method of modulating the organization and function of PDA films through metal ions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app