Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Regulatory T cells in human autoimmune thyroid disease.

CONTEXT: T regulatory cells have a key role in the pathogenesis of autoimmune diseases in different animal models. However, less information is available regarding these cells in human autoimmune thyroid diseases (AITD).

OBJECTIVE: The objective of the study was to analyze different regulatory T cell subsets in patients with AITD.

DESIGN: We studied by flow cytometry and immunohistochemistry different T regulatory cell subsets in peripheral blood mononuclear cells (PBMCs) and thyroid cell infiltrates from 20 patients with AITD. In addition, the function of T(REG) lymphocytes was assessed by cell proliferation assays. Finally, TGF-beta mRNA in thyroid tissue and its in vitro synthesis by thyroid mononuclear cells (TMCs) was determined by RNase protection assay and quantitative PCR.

RESULTS: PBMCs from AITD patients showed an increased percent of CD4+ lymphocytes expressing glucocorticoid-induced TNF receptor (GITR), Foxp3, IL-10, TGF-beta, and CD69 as well as CD69+CD25(bright), CD69+TGF-beta, and CD69+IL-10+ cells, compared with controls. TMCs from these patients showed an increased proportion of CD4+GITR+, CD4+CD69+, and CD69+ cells expressing CD25(bright), GITR, and Foxp3, compared with autologous PBMCs. Furthermore, a prominent infiltration of thyroid tissue by CD69+, CD25+, and GITR+ cells, with moderate levels of Foxp3+ lymphocytes, was observed. The suppressive function of peripheral blood T(REG) cells was defective in AITD patients. Finally, increased levels of TGF-beta mRNA were found in thyroid tissue, and thyroid cell infiltrates synthesized in vitro significant levels of TGF-beta upon stimulation through CD69.

CONCLUSIONS: Although T regulatory cells are abundant in inflamed thyroid tissue, they are apparently unable, in most cases, to downmodulate the autoimmune response and the tissue damage seen in AITD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app