Journal Article
Research Support, Non-U.S. Gov't
Retracted Publication
Add like
Add dislike
Add to saved papers

Small molecule-based reversible reprogramming of cellular lifespan.

Most somatic cells encounter an inevitable destiny, senescence. Little progress has been made in identifying small molecules that extend the finite lifespan of normal human cells. Here we show that the intrinsic 'senescence clock' can be reset in a reversible manner by selective modulation of the ataxia telangiectasia-mutated (ATM) protein and ATM- and Rad3-related (ATR) protein with a small molecule, CGK733. This compound was identified by a high-throughput phenotypic screen with automated imaging. Employing a magnetic nanoprobe technology, magnetism-based interaction capture (MAGIC), we identified ATM as the molecular target of CGK733 from a genome-wide screen. CGK733 inhibits ATM and ATR kinase activities and blocks their checkpoint signaling pathways with great selectivity. Consistently, siRNA-mediated knockdown of ATM and ATR induced the proliferation of senescent cells, although with lesser efficiency than CGK733. These results might reflect the specific targeting of the kinase activities of ATM and ATR by CGK733 without affecting any other domains required for cell proliferation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app