Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Biophysical characterization of HRC peptide analogs interaction with heptad repeat regions of the SARS-coronavirus Spike fusion protein core.

The Spike (S) protein of SARS-coronavirus (SARS-CoV) mediates viral entry into host cells. It contains two heptad repeat regions, denoted HRN and HRC. We have identified the location of the two interacting HR regions that form the six-helix bundle (B. Tripet, et al, J. Biol. Chem., 279: 20836-20849, 2004). In this study, HRC peptide (1150-1185) was chosen as the region to make structure-based substitutions to design a series of HRC analogs with increased hydrophobicity, helical propensity and electrostatic interactions, or with a covalent constraint (lactam bridge) to stabilize the alpha-helical conformation. Effects of the substitutions on alpha-helical structure of HRC peptides and their abilities to interact with HRN or HRC have been examined by biophysical techniques. Our results show that the binding of the HRC analogs to HRN does not correlate with the coiled-coil stability of the HRC analogs, but their interactions with HRC does correlate with their stability, except for HRC7. This study also suggested three types of potential peptide inhibitors against viral entry can be designed, those that simultaneously inhibit interaction with HRC and HRN and those that are either HRC-specific or HRN-specific. For example, our study shows the important role of alpha-helical structure in the formation of the six-helix bundle where the lactam bridge constrained analog (HRC5) provided the best interaction with HRN. The importance of alpha-helical structure in the interaction with native HRC was demonstrated with analog HRC4 which binds best to HRC.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app