Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Isolation and characterization of a pseudomonas oleovorans degrading the chloroacetamide herbicide acetochlor.

Biodegradation 2006 June
To date, no pure bacterial cultures that could degrade acetochlor have been described. In this study, one strain of microorganism capable of degrading acetochlor, designated as LCa2, was isolated from acetochlor-contaminated soil. The strain LCa2 is Pseudomonas oleovorans according to the criteria of Bergey's manual of determinative bacteriology and sequence analysis of the partial 16S rRNA gene. Optimum growth temperature and pH were 35 degrees C and 8.0, respectively. The strain could degrade 98.03% of acetochlor treated at a concentration of 7.6 mg l(-1) after 7 days of incubation and could tolerate 200 mg l(-1) of acetochlor. When the acetochlor concentration became higher, the degradation cycle became longer. The acetochlor biodegradation products were identified by GC-MS based on mass spectral data and fragmentation patterns. The main plausible degradative pathways involved dechlorination, hydroxylation, N-dealkylation, C-dealkylation and dehydrogenation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app