JOURNAL ARTICLE
REVIEW
Add like
Add dislike
Add to saved papers

Review article: the clinical pharmacology of proton pump inhibitors.

Proton pump inhibitors inhibit the gastric H+/K+-ATPase via covalent binding to cysteine residues of the proton pump. All proton pump inhibitors must undergo acid accumulation in the parietal cell through protonation, followed by activation mediated by a second protonation at the active secretory canaliculus of the parietal cell. The relative ease with which these steps occur with different proton pump inhibitors underlies differences in their rates of activation, which in turn influence the location of covalent binding and the stability of inhibition. Slow activation is associated with binding to a cysteine residue involved in proton transport that is located deep in the membrane. However, this is inaccessible to the endogenous reducing agents responsible for restoring H+/K+-ATPase activity, favouring a longer duration of gastric acid inhibition. Pantoprazole and tenatoprazole, a novel proton pump inhibitor which has an imidazopyridine ring in place of the benzimidazole moiety found in other proton pump inhibitors, are activated more slowly than other proton pump inhibitors but their inhibition is resistant to reversal. In addition, tenatoprazole has a greatly extended plasma half-life in comparison with all other proton pump inhibitors. The chemical and pharmacological characteristics of tenatoprazole give it theoretical advantages over benzimidazole-based proton pump inhibitors that should translate into improved acid control, particularly during the night.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app