Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Structure of the mammalian NOS regulator dimethylarginine dimethylaminohydrolase: A basis for the design of specific inhibitors.

Structure 2006 May
Dimethylarginine dimethylaminohydrolase (DDAH) is involved in the regulation of nitric oxide synthase (NOS) by metabolizing the free endogenous arginine derivatives N(omega)-methyl-L-arginine (MMA) and N(omega),N(omega)-dimethyl-L-arginine (ADMA), which are competitive inhibitors of NOS. Here, we present high-resolution crystal structures of DDAH isoform 1 (DDAH-1) isolated from bovine brain in complex with different inhibitors, including S-nitroso-L-homocysteine and Zn2+, a regulator of this mammalian enzyme. The structure of DDAH-1 consists of a propeller-like fold similar to other arginine-modifying enzymes and a flexible loop, which adopts different conformations and acts as a lid at the entrance of the active site. The orientation and interaction mode of inhibitors in the active site give insight into the regulation and the molecular mechanism of the enzyme. The presented structures provide a basis for the structure-based development of specific DDAH-1 inhibitors that might be useful in the therapeutic treatment of NOS dysfunction-related diseases.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app