Add like
Add dislike
Add to saved papers

A computational study of the nondissociative mechanisms that interchange apical and equatorial atoms in square pyramidal molecules.

The lowest energy transition state for the nondissociative apical/equatorial atom exchange mechanism for three square pyramidal AEX5 molecular species was calculated (CCSD(T)/pVTZ; B3LYP/pVTZ, aug-cc-pV5Z) to have a hemidirected geometry with C(s) symmetry for BrF5, IF5, and XeF5+. In contrast, holodirected C2v-symmetric transition states for this process were located for the AEX5 square pyramidal molecules ClF5, ICl5, and IBr5. Imaginary frequencies were calculated and examined in a visual/dynamic fashion to gain insight into these fluxional processes. Although both mechanisms exchange one apical for one equatorial atom in each cycle of motion, processes that pass through C2v transition states have characteristic features of the well-known Berry pseudorotation and Lever mechanisms while those which pass through transition states of C(s) symmetry have features that are a mixture of Berry, Lever, and turnstile-like character. Two periodic trends are observed: as the atomic number on the central atom increases (same terminal atoms), the barrier for apical/equatorial exchange and the value of the imaginary frequency both decrease. Similarly, as the atomic number of the terminal atoms increase (same central atom), the barrier for apical/equatorial exchange decreases, as does the computed imaginary frequency.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app