JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Co-operative mineralization and protein self-assembly in amelogenesis: silica mineralization and assembly of recombinant amelogenins in vitro.

An amorphous silica mineralization technique was used to produce inorganic/protein composites to elucidate the structure and mechanism of formation of amelogenin assemblies, which may play an important role in regulating enamel structure during the initial stages of amelogenesis. Full-length recombinant amelogenins from mouse (rM179) and pig (rP172) were investigated along with key degradation products (rM166 and native P148) lacking the hydrophilic C terminus found in parent molecules. The resulting products were examined using transmission electron microscopy and/or small-angle X-ray scattering. Using protein concentrations of 0.1-3 mg ml-1, large monodisperse spheres of remarkably similar mean diameters were observed using rM179 (124+/-4 nm) and rP172 (126+/-7 nm). These spheres also exhibited 'internal structure', comprising nearly spherical monodisperse particles of approximately 20 nm in diameter. In the presence of rM166, P148, and bovine serum albumin (control), large unstructured and randomly shaped particles (250-1000 nm) were observed. Without added protein, large dense spherical particles of silica (mean approximately 500 nm) lacking internal structure were produced. These findings demonstrate that full-length amelogenins have the ability to form higher-order structures, whereas amelogenins that lack the hydrophilic C terminus do not. The results also suggest that full-length amelogenin can guide the formation of organized mineralized structures through co-operative interactions between assembling protein and forming mineral.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app