Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Analysis of close stable homolog juxtaposition during meiosis in mutants of Saccharomyces cerevisiae.

Genetics 2006 July
A unique aspect of meiosis is the segregation of homologous chromosomes at the meiosis I division. The pairing of homologous chromosomes is a critical aspect of meiotic prophase I that aids proper disjunction at anaphase I. We have used a site-specific recombination assay in Saccharomyces cerevisiae to examine allelic interaction levels during meiosis in a series of mutants defective in recombination, chromatin structure, or intracellular movement. Red1, a component of the chromosome axis, and Mnd1, a chromosome-binding protein that facilitates interhomolog interaction, are critical for achieving high levels of allelic interaction. Homologous recombination factors (Sae2, Rdh54, Rad54, Rad55, Rad51, Sgs1) aid in varying degrees in promoting allelic interactions, while the Srs2 helicase appears to play no appreciable role. Ris1 (a SWI2/SNF2 related protein) and Dot1 (a histone methyltransferase) appear to play minor roles. Surprisingly, factors involved in microtubule-mediated intracellular movement (Tub3, Dhc1, and Mlp2) appear to play no appreciable role in homolog juxtaposition, unlike their counterparts in fission yeast. Taken together, these results support the notion that meiotic recombination plays a major role in the high levels of homolog interaction observed during budding yeast meiosis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app