Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Influence of citric acid amendments on the availability of weathered PCBs to plant and earthworm species.

A series of small and large pot trials were conducted to assess the phytoextraction potential of several plant species for weathered polychlorinated biphenyls (PCBs) in soil (105 microg/g Arochlor 1268). In addition, the effect of citric acid on PCB bioavailability to both plants and earthworms was assessed. Under small pot conditions (one plant, 400 g soil), three cucurbits (Cucurbita pepo ssp pepo [zucchini] and ssp ovifera [nonzucchini summer squash], Cucumis sativus, cucumber) accumulated up to 270 microg PCB/g in the roots and 14 microg/g in the stems, resulting in 0.10% contaminant removal from soil. Periodic 1 mM subsurface amendments of citric acid increased the stem and leaf PCB concentration by 330 and 600%, respectively, and resulted in up to a 65% increase in the total amount of contaminant removed from soil. Although citric acid at 10 mM more than doubled the amount of PCB desorbed in abiotic batch slurries, contaminant accumulation by two earthworm species (Eisenia foetida and Lumbricus terrestris) was unaffected by citric acid at 1 and 10 mM and ranged from 11-15 microg/g. Two large pot trials were conducted in which cucurbits (C. pepo ssp pepo and ssp ovifera, C. sativus) and white lupin (Lupinus albus) were grown in 70 kg of PCB-contaminated soil White lupin was the poorest accumulator of PCBs, with approximately 20 microg/g in the roots and 1 microg/g in the stems. Both C. pepo ssp ovifera (summer squash) and C. sativus (cucumber) accumulated approximately 65-100 microg/g in the roots and 6-10 microg/g in the stems. C. pepo ssp pepo (zucchini) accumulated significantly greater levels of PCB than all other species, with 430 microg/g in the roots and 22 microg/g in the stems. The mechanism by which C. pepo spp pepo extracts and translocates weathered PCBs is unknown, but confirms earlier findings on the phytoextraction of other weathered persistent organic pollutants such as chlordane, p,p'-DDE, and polycyclic aromatic hydrocarbons.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app