JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Methyl and phenyl substitution effects on the proton affinities of hydrides of first and second row elements and substituent effects on the proton affinities of ring carbons in benzene: a DFT study.

Theoretical calculations using B3LYP density functional theory (DFT) with the 6-311++G(d,p) basis set have been performed to determine proton affinities (PAs) of a series of H-X compounds and the corresponding methyl- (H(3)C-X) and phenyl- (Ph-X) substituted derivatives with a variety of proton acceptor atoms, such as C, O, N, F, Si, P, S, Cl, etc. Our results illustrate an interesting substituent effect on PAs. The PAs of ring carbon atoms for a series of monosubstituted benzene molecules (Y-C(6)H(5); Y = F, Cl, CH(3), OCH(3), NH(2), PH(2), OH, SH, SiH(3), CN, CF(3), and NO(2)) have also been estimated. Correlations between proton affinities of H-X, H(3)C-X, and Ph-X and substituent effects on the PAs of the ring carbon atoms for a series of monosubstituted benzene molecules have been studied. It has been observed that substituent effects on the PAs of the ring carbon atoms follow a good Hammett-type correlation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app