JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Asiaticoside induces human collagen I synthesis through TGFbeta receptor I kinase (TbetaRI kinase)-independent Smad signaling.

Planta Medica 2006 March
Skin aging appears to be principally related to a decrease in the levels of type I collagen, the primary component of the skin dermis. Asiaticoside, a saponin component isolated from Centella asiatica, has been shown to induce type I collagen synthesis in human dermal fibroblast cells. However, the mechanism underlying asiaticoside-induced type I collagen synthesis, especially at a molecular level, remains only partially understood. In this study, we have attempted to characterize the action mechanism of asiaticoside in type I collagen synthesis. Asiaticoside was determined to induce the phosphorylation of both Smad 2 and Smad 3. In addition, we detected the asiaticoside-induced binding of Smad 3 and Smad 4. In a consistent result, the nuclear translocation of the Smad 3 and Smad 4 complex was induced via treatment with asiaticoside, pointing to the involvement of asiaticoside in Smad signaling. In addition, SB431542, an inhibitor of the TGFbeta receptor I (TbetaRI) kinase, which is known to be an activator of the Smad pathway, was not found to inhibit both Smad 2 phosphorylation and Type 1 collagen synthesis induced by asiaticoside. Therefore, our results show that asiaticoside can induce type I collagen synthesis via the activation of the TbetaRI kinase-independent Smad pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app