COMPARATIVE STUDY
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Biomechanics of the C5-C6 spinal unit before and after placement of a disc prosthesis.

The study consists of a biomechanical comparison between the intact C5-C6 spinal segment and the same segment implanted with the Bryan artificial disc prosthesis (Medtronic Ltd., Memphis, TN, USA), by the use of the finite element (FE) method. Our target is the prediction of the influence of prosthesis placement on the resulting mechanics of the C5-C6 spine unit. A FE model of the intact C5-C6 segment was built, employing realistic models of the vertebrae, disc and ligaments. Simulations were conducted imposing a compression preload combined to a flexion/extension moment, a pure lateral bending moment and a pure torsion moment, and the calculated results were compared to data from literature. The model was then modified to include the Bryan cervical disc prosthesis, and the simulations were repeated. The location of the instantaneous center of rotation (ICR) of C5 with respect to C6 throughout flexion/extension was calculated in both models. In general, the moment-rotation curves obtained from the disc prosthesis-implanted model were comparable to the curves obtained from the intact model, except for a slightly greater stiffness induced by the artificial disc. The position of the calculated ICRs was rather stable throughout flexion-extension and was generally confined to a small area, qualitatively matching the corresponding physiological region, in both models. These results imply that the Bryan disc prosthesis allows to correctly reproduce a physiological flexion/extension at the implanted level. The results of this study have quantified aspects that may assist in optimizing cervical disc replacement primarily from a biomechanical point of view.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app