Comparative Study
Journal Article
Add like
Add dislike
Add to saved papers

QT PRODACT: in vivo QT assay in the conscious dog for assessing the potential for QT interval prolongation by human pharmaceuticals.

The goal of the present study was to examine the utility of the conscious dog model by assessing the QT-interval-prolonging potential of ten positive compounds that have been reported to induce QT interval prolongation in clinical use and seven negative compounds considered not to have such an effect. Three doses of test compounds or vehicle were administered orally to male beagle dogs (n=4), and telemetry signals were recorded for 24 h after administration. All positive compounds (astemizole, bepridil, cisapride, E-4031, haloperidol, MK-499, pimozide, quinidine, terfenadine, and thioridazine) caused a significant increase in the corrected QT (QTc) interval, with a greater than 10% increase achieved at high doses. In contrast, administration of negative compounds (amoxicillin, captopril, ciprofloxacin, diphenhydramine, nifedipine, propranolol, and verapamil) did not produce any significant change in the QTc interval, with the exception of nifedipine that may have produced an overcorrection of the QTc interval due to increased heart rate. The estimated plasma concentrations of the positive compounds that caused a 10% increase in the QTc interval were in good agreement with the plasma/serum concentrations achieved in humans who developed prolonged QT interval or torsade de pointes (TdP). Although careful consideration should be given to the interpretation of QT data with marked heart rate change, these data suggest that an in vivo QT assay using the conscious dog is a useful model for the assessment of QT interval prolongation by human pharmaceuticals.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app