Journal Article
Research Support, N.I.H., Extramural
Add like
Add dislike
Add to saved papers

The lupus-susceptibility locus, Sle3, mediates enhanced resistance to bacterial infections.

The genetic predisposition to many autoimmune diseases is inherited as a polygenic trait. It is conceivable that some of the causative alleles in these diseases became prevalent in the population by conferring a survival benefit against environmental assaults, such as infections. We used mice cogenic for genetic loci predisposing to systemic lupus erythomatosus to test the hypothesis that some of these genetic loci protect the host from bacterial infections. Mice with the Sle3 lupus-susceptibility locus on a wild-type background were found to have enhanced antibacterial responses in the context of pneumonia and intra-abdominal sepsis than wild-type animals. This was associated with markedly augmented accumulation of neutrophils in infected tissues, and was bone marrow transferable and dependent on the presence of neutrophils, but not lymphocytes. There was no difference in in vitro leukocyte killing of bacteria nor influx of phagocytes between lupus-susceptible and wild-type animals, but neutrophils from lupus-susceptible mice displayed markedly reduced rate of apoptosis, associated with altered expression of Bcl-2 family proteins, contributing to their greater accumulation. Importantly, deliberate inhibition of apoptosis in wild-type animals significantly boosted the accumulation of neutrophils at the site of infection and resulted in an enhanced antimicrobial response. These observations support the concept that some of the genetic loci that mediate autoimmunity may also confer augmented antimicrobial innate immunity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app