Journal Article
Research Support, N.I.H., Extramural
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Outcome prediction by a mathematical model based on noninvasive hemodynamic monitoring.

Journal of Trauma 2006 January
BACKGROUND: The aims are to apply a mathematical search and display model based on noninvasive hemodynamic monitoring, to predict outcome early in a consecutively monitored series of 661 severely injured patients.

METHODS: A prospective observational study by a previously designed protocol in a Level I trauma service in a university-run inner city public hospital was conducted. The survival probabilities were calculated at the initial resuscitation on admission and at subsequent intervals during their hospitalization beginning shortly after admission to the emergency department. Cardiac function was evaluated by cardiac output (CI), heart rate (HR), and mean arterial blood pressure (MAP), pulmonary function by pulse oximetry (SapO2), and tissue perfusion function by transcutaneous oxygen indexed to FiO2, (PtcO2/FiO2), and carbon dioxide (PtcCO2) tension.

RESULTS: The survival probability (SP) averaged 89 +/- 0.4% for survivors and 75.7 +/- 1.6% (p < 0.001) for nonsurvivors in the first 24-hour period of resuscitation. The CI, MAP, SapO2, PtcO2, and PtcO2/FiO2 were significantly higher in survivors than in nonsurvivors in initial resuscitation, whereas HR and PtcCO2 were higher in nonsurvivors.

CONCLUSIONS: During the initial resuscitation period, misclassifications were 102 of 661 or 15%. The SP provided early objective criteria to evaluate hospital outcome and to track changes throughout the hospital course based on a large database of patients with similar clinical-hemodynamic states.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app