Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Subunit dependencies of N-methyl-D-aspartate (NMDA) receptor-induced alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor internalization.

N-Methyl-D-aspartate (NMDA) receptor (NMDAR) activity regulates the net number of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors (AMPAR) at the cell surface by modulating the balance between AMPAR membrane insertion and endocytosis. In this study, we addressed the role of NMDAR subtypes and of NMDAR-mediated Ca2+ influx in the NMDAR-induced endocytosis of GluR2-containing AMPARs in primary murine hippocampal neurons. We found that NMDAR activation enhanced the endocytosis of AMPARs containing the GluR2 splice variants with short, but not long, cytoplasmic tails. NMDA-induced GluR2 endocytosis was completely inhibited by pharmacological block of NR2B-containing NMDARs. In turn, preferential block of NR2A-containing NMDARs did not affect NMDA-induced AMPAR endocytosis, indicating that AMPAR internalization is controlled by a restricted set of NMDARs. The NMDA-induced GluR2 internalization was also observed in the absence of extracellular Na+ ions, suggesting that membrane depolarization is not a prerequisite for this effect. Furthermore, the activation of Ca2+-impermeable NMDARs containing the mutant NR1(N598R) subunit failed to enhance AMPAR endocytosis, indicating a requirement of Ca2+ influx directly through the NMDAR channels. In summary, our findings suggest that the NMDAR-induced selective internalization of short C-terminal GluR2-containing AMPARs requires a Ca2+ signal that originates from NMDAR channels and is processed in an NMDAR subtype-restricted manner.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app