JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Mutation detection in four candidate genes (OXA1L, MRS2L, YME1L and MIPEP) for combined deficiencies in the oxidative phosphorylation system.

Mitochondria are the main energy-producing organelles of the cell. Five complexes embedded in the mitochondrial inner membrane, together constituting the oxidative phosphorylation (OXPHOS) system, comprise the final steps in cellular energy production. Many patients with a mitochondrial defect suffer from a so-called combined deficiency, meaning that the enzymatic activities of two or more complexes of the OXPHOS system are decreased. Numerous mutations have been described in nuclear genes that are involved in the functioning of a single complex of the OXPHOS system. However, little attention has been paid to patients with a deficiency of more than one complex of this particular system. In this study we have investigated four nuclear genes (OXA1L, MRS2L, YME1L and MIPEP) that might be involved in the pathology of combined enzymatic deficiencies of the OXPHOS system. Based on the results of yeast knockouts of these four proteins, we have sequenced the open reading frame of OXA1L in eight patients with an enzymatic deficiency of complexes I and IV. MRS2L, YME1L and MIPEP have been sequenced in three patients with a combined defect of complexes III and IV. No mutations were detected in these patients, showing that at least in these patients the OXPHOS system deficiency cannot be explained by a mutation in these four genes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app