Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

A concept for miniaturized 3-D cell culture using an extracellular matrix gel.

Electrophoresis 2005 December
This paper presents a novel method to embed, anchor, and cultivate cells in a controlled 3-D flow-through microenvironment. This is realized using an etched silicon pillar flow chamber filled with extracellular matrix (ECM) gel mixed with cells. At 4 degrees C, while in liquid form, ECM gel is mixed with cells and injected into the chamber. Raising the temperature to 37 degrees C results in a gel, with cells embedded. The silicon pillars both stabilize and increase the surface to volume ratio of the gel. During polymerization the gel shrinks, thus creating channels, which enables perfusion through the chip. The pillars increase the mechanical stability of the gel permitting high surface flow rates without surface modifications. Within the structure cells were still viable and proliferating after 6 days of cultivation. Our method thus makes it possible to perform medium- to long-term cultivation of cells in a controlled 3-D environment. This concept opens possibilities to perform studies of cells in a more physiological environment compared to traditional 2-D cultures on flat substrates.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app