JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Yersiniophage phiR1-37 is a tailed bacteriophage having a 270 kb DNA genome with thymidine replaced by deoxyuridine.

Microbiology 2005 December
Bacteriophage piR1-37 was isolated based on its ability to infect strain YeO3-R1, a virulence-plasmid-cured O antigen-negative derivative of Yersinia enterocolitica serotype O : 3. In this study, the phage receptor was found to be a structure in the outer core hexasaccharide of Y. enterocolitica O : 3 LPS. The phage receptor was present in the outer core of strains of many other Y. enterocolitica serotypes, but also in some Yersinia intermedia strains. Surprisingly, the receptor structure resided in the O antigen of Yersinia pseudotuberculosis O : 9. Electron microscopy demonstrated that phiR1-37 particles have an icosahedral head of 88 nm, a short neck of 10 nm, a long contractile tail of 236 nm, and tail fibres of at least 86 nm. This implies that the phage belongs to the order Caudovirales and the family Myoviridae in the ICTV (International Committee for Taxonomy of Viruses) classification. phiR1-37 was found to have a lytic life cycle, with eclipse and latent periods of 40 and 50 min, respectively, and a burst size of approximately 80 p.f.u. per infected cell. Restriction digestions and PFGE showed that the phiR1-37 genome was dsDNA and approximately 270 kb in size. Enzymically hydrolysed DNA was subjected to HPLC-MS/MS analysis, which demonstrated that the phiR1-37 genome is composed of DNA in which thymidine (T) is >99 % replaced by deoxyuridine (dU). The only organisms known to have similar DNA are the Bacillus subtilis-specific bacteriophages PBS1 and PBS2. N-terminal amino acid sequences of four major structural proteins did not show any similarity to (viral) protein sequences in databases, indicating that close relatives of phiR1-37 have not yet been characterized. Genes for two of the structural proteins, p24 and p46, were identified from the partially sequenced phiR1-37 genome.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app