Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Cardiac functional and histopathologic findings in humans and mice with mucopolysaccharidosis type I: implications for assessment of therapeutic interventions in hurler syndrome.

Pediatric Research 2006 January
Hurler syndrome (mucopolysaccharidosis type I [MPS I]) is a uniformly lethal autosomal recessive storage disease caused by absence of the enzyme alpha-l-iduronidase (IDUA), which is involved in lysosomal degradation of sulfated glycosaminoglycans (GAGs). Cardiomyopathy and valvar insufficiency occur as GAGs accumulate in the myocardium, spongiosa of cardiac valves, and myointima of coronary arteries. Here we report the functional, biochemical, and morphologic cardiac findings in the MPS I mouse. We compare the cardiac functional and histopathological findings in the mouse to human MPS I. In MPS I mice, we have noted aortic insufficiency, increased left ventricular size, and decreased ventricular function. Aortic and mitral valves are thickened and the aortic root is dilated. However, murine MPS I is not identical to human MPS I. Myointimal proliferation of epicardial coronary arteries is unique to human MPS I, whereas dilation of aortic root appears unique to murine MPS I. Despite the differences between murine and human MPS I, the murine model provides reliable in vivo outcome parameters, such as thickened and insufficient aortic valves and depressed cardiac function that can be followed to assess the impact of therapeutic interventions in preclinical studies in Hurler syndrome.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app