JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Identification and characterization of a novel member of the ATP-sensitive K+ channel subunit family, Kir6.3, in zebrafish.

Physiological Genomics 2006 Februrary 15
ATP-sensitive K+ (KATP) channels play a crucial role in coupling cellular metabolism to membrane potential. In addition to the orthologs corresponding to Kir6.1 and Kir6.2 of mammals, we have identified a novel member, designated Kir6.3 (zKir6.3), of the inward rectifier K+ channel subfamily Kir6.x in zebrafish. zKir6.3 is a protein of 432 amino acids that shares 66% identity with mammalian Kir6.2 but differs considerably from mammalian Kir6.1 and Kir6.2 in the COOH terminus, which contain an Arg-Lys-Arg (RKR) motif, an endoplasmic reticulum (ER) retention signal. Single-channel recordings of reconstituted channels show that zKir6.3 requires the sulfonylurea receptor 1 (SUR1) subunit to produce KATP channel currents with single-channel conductance of 57.5 pS. Confocal microscopic analysis shows that zebrafish Kir6.3 requires the SUR1 subunit for its trafficking to the plasma membrane. Analyses of chimeric protein between human Kir6.2 and zKir6.3 and a COOH-terminal deletion of zKir6.3 indicate that interaction between the COOH terminus of zKir6.3 and SUR1 is critical for both channel activity and trafficking to the plasma membrane. We also identified zebrafish orthologs corresponding to mammalian SUR1 (zSUR1) and SUR2 (zSUR2) by the genomic database. Both Kir6.3 and SUR1 are expressed in embryonic brain of zebrafish, as assessed by whole mount in situ hybridization. These data indicate that Kir6.3 and SUR1 form functional KATP channels at the plasma membrane in zebrafish through a mechanism independent from ER retention by the RKR motif.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app