Add like
Add dislike
Add to saved papers

Growth inhibition by tungsten in the sulfur-oxidizing bacterium Acidithiobacillus thiooxidans.

Growth of five strains of sulfur-oxidizing bacteria Acidithiobacillus thiooxidans, including strain NB1-3, was inhibited completely by 50 microM of sodium tungstate (Na(2)WO(4)). When the cells of NB1-3 were incubated in 0.1 M beta-alanine-SO(4)(2-) buffer (pH 3.0) with 100 microM Na(2)WO(4) for 1 h, the amount of tungsten bound to the cells was 33 microg/mg protein. Approximately 10 times more tungsten was bound to the cells at pH 3.0 than at pH 7.0. The tungsten binding to NB1-3 cells was inhibited by oxyanions such as sodium molybdenum and ammonium vanadate. The activities of enzymes involved in elemental sulfur oxidation of NB1-3 cells such as sulfur oxidase, sulfur dioxygenase, and sulfite oxidase were strongly inhibited by Na(2)WO(4). These results indicate that tungsten binds to NB1-3 cells and inhibits the sulfur oxidation enzyme system of the cells, and as a result, inhibits cell growth. When portland cement bars supplemented with 0.075% metal nickel and with 0.075% metal nickel and 0.075% calcium tungstate were exposed to the atmosphere of a sewage treatment plant containing 28 ppm of H(2)S for 2 years, the weight loss of the portland cement bar with metal nickel and calcium tungstate was much lower than the cement bar containing 0.075% metal nickel.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app