JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Dietary fibers from mushroom sclerotia: 3. In vitro fermentability using human fecal microflora.

The in vitro fermentability of three novel dietary fibers (DFs) prepared from mushroom sclerotia, namely, Pleurotus tuber-regium, Polyporous rhinocerus, and Wolfiporia cocos, was investigated and compared with that of the cellulose control. All DF samples (0.5 g each) were fermented in vitro with a human fecal homogenate (10 mL) in a batch system (total volume, 50 mL) under strictly anaerobic conditions (using oxygen reducing enzyme and under argon atmosphere) at 37 degrees C for 24 h. All three novel sclerotial DFs exhibited notably higher dry matter disappearance (P. tuber-regium, 8.56%; P. rhinocerus, 13.5%; and W. cocos, 53.4%) and organic matter disappearance (P. tuber-regium, 9.82%; P. rhinocerus, 14.6%; and W. cocos, 57.4%) when compared with those of the cellulose control. Nevertheless, only the W. cocos DF was remarkably degraded to produce considerable amounts of total short chain fatty acids (SCFAs) (5.23 mmol/g DF on organic matter basis, with a relatively higher molar ratio of propionate) that lowered the pH of its nonfermented residue to a slightly acidic level (5.89). Variations on the in vitro fermentability among the three sclerotial DFs might mainly be attributed to their different amounts of interwoven hyphae present (different amounts of enzyme inaccessible cell wall components) as well as the possible different structural arrangement (linkage and degree of branching) of their beta-glucans.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app