EVALUATION STUDIES
JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

A multianalyte flow electrochemical cell: application to the simultaneous determination of carbohydrates based on bioelectrocatalytic detection.

A multianalyte flow electrochemical cell (MAFEC) for bioanalysis is constructed, characterised and used for simultaneous carbohydrate analysis incorporating mediated amperometric enzyme electrodes. Although multidetection schemes can be addressed with microfabricated systems, it is demonstrated that a "meso" analytical device of low cost can give answers to traditional simultaneous multianalysis problems, being robust, and easy to construct and operate. The cell operates as a radial flow thin-layer device and can achieve mass transport controlled response for fast electrochemical reactions. When appropriate enzymatic electrodes are used the response becomes kinetically limited, but still shows a better than 5% R.S.D. for response to different sugars analysed. All the enzymatic sensors are mediated with different osmium compounds appropriate for each enzyme's mechanism (NAD or PQQ dehydrogenases) in some cases combining multienzyme sensors. All sensors were optimised so that different sugars do not produce interferences to other sensors. Matrix interferences were kept low by operating all sensors at or below 150 mV versus Ag/AgCl. The integrated system was used for the simultaneous detection of fructose, sucrose, glucose, galactose, and lactose, fully characterising the system for these analytes (sensitivity, dynamic range). Cross referenced calibration curves were used for signal treatment and interpretation and it was possible to analyse real juice and milk samples with results agreeing with the standard enzymatic methods for the same analyses with a sampling frequency of more than 100 h(-1).

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app