JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Interactions between dehydroepiandrosterone and glucocorticoid metabolism in pig kidney: nuclear and microsomal 11beta-hydroxysteroid dehydrogenases.

The 11beta-hydroxysteroid dehydrogenase type 1 (11betaHSD1) activates glucocorticoids (GC) by reversibly converting 11-keto-GC to 11-hydroxy-GC, while 11betaHSD2 and 11betaHSD3 only catalyzes the reverse reaction. Recently, rat and human 11betaHSDs were shown to interconvert 7alpha- and 7beta-hydroxy-dehydroepiandrosterone (7alpha- or 7beta-OH-DHEA) with 7-oxo-DHEA. We report that pig kidney microsomes (PKMc) and nuclei (PKN) oxidize 7alpha-OH-DHEA to 7-oxo-DHEA at higher rates with NAD+, than with NADP+. Corticosterone (CS), dehydrocoticosterone (DHC), 11alpha- and 11beta-hydroxyprogesterone, and carbenoxolone completely inhibited these reactions, while 7-oxo-DHEA only inhibited the NAD+-dependent reaction. Conversely, CS oxidation was not inhibited by 7alpha-OH-DHEA or 7-oxo-DHEA. PKMc and PKN did not convert 7-oxo-DHEA to 7-OH-DHEA with either NADPH or NADH. Finally, PKN contained a high affinity, NADPH-dependent 11betaHSD that reduces DHC to CS. The GC effects on interconversion of DHEA metabolites may have clinical significance, since DHEA and its 7-oxidized derivatives have been proposed for treatment of human autoimmune and inflammatory disorders.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app