JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
RESEARCH SUPPORT, U.S. GOV'T, P.H.S.
Add like
Add dislike
Add to saved papers

Prevention of NF-kappaB activation in vivo by a cell-permeable NF-kappaB inhibitor peptide.

The NF-kappaB/Rel transcription factor family plays a central role in coordinating the expression of a variety of genes that regulate stress responses, immune cell activation, apoptosis, proliferation, differentiation, and oncogenic transformation. Interventions that target the NF-kappaB pathway may be therapeutic for a variety of pathologies, especially immune/inflammatory diseases. Using membrane translocating sequence (MTS) technology, we developed a cell-permeable dominant inhibitor of NF-kappaB activation, termed IkappaBalpha-(DeltaN)-MTS. This molecule contains a 12-amino acid MTS motif attached to the COOH-terminal region of a nondegradable inhibitor protein [IkappaBalpha-(DeltaN)]. The recombinant protein enters cells and localizes in the cytoplasm. Delivery of the IkappaBalpha-(DeltaN)-MTS to cell lines and primary cells inhibited nuclear translocation of NF-kappaB proteins induced by cell activation. The protein also effectively inhibited NF-kappaB activation in vivo in two different animal models: NF-kappaB activation in response to skin wounding in mice and NF-kappaB activation in lungs after endotoxin treatment in sheep. Inhibition of NF-kappaB by the IkappaBalpha-(DeltaN)-MTS in the endotoxin model attenuated physiological responses to endotoxemia. These data demonstrate that activation of NF-kappaB can be inhibited using a recombinant protein designed to penetrate into cells. This technology may provide a new approach to NF-kappaB pathway-targeted therapies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app