Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Maturation processes in automatic change detection as revealed by event-related brain potentials and dipole source localization: significance for adult AD/HD.

Mismatch negativity (MMN) is an event-related potential reflecting automatic attention-related information processing marking the detection of auditory change. The bilateral scalp distribution develops by 14 years of age, and is elicited with adult latencies by 17 years. But consistent with reports of continued brain maturation after adolescence, we show here that features of the temporal and frontal lobe dipole sources also continue to develop in the third decade of life. This has consequences for studies of the developmental course of MMN anomalies, from childhood into adulthood, in attention-deficit/hyperactivity disorder. Two groups of healthy subjects with mean ages of 17 and 30 years were presented with a 3-tone auditory oddball. The duration-deviant MMN was recorded during attention to a visual discrimination (auditory-passive condition) and an active auditory discrimination. MMN amplitudes were smaller in the older subjects and the MMN lasted longer over the right hemisphere. Latencies and moments of the four dipoles in the temporal and frontal lobes did not distinguish the two subject-groups. But both temporal lobe sources were located significantly more ventrally and further left in the young adult than in the adolescent subjects. The left cingular source moved posteriorly and the right inferior frontal source moved antero-medially in the older subjects. Brain development in the third decade may cause the two frontal sources to move apart on the rostro-caudal axis but the temporal lobe sources to move left on the lateral and down on the dorsoventral axes. Thus special care is necessary in interpreting putative dysfunctional neurobiological changes in developmental attention-deficit disorders where as-yet-unspecified sub-groups may show a late developmental lag, partial lag, or no lag at all, associated with other impairments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app