Add like
Add dislike
Add to saved papers

Altered distribution of striatal activity-dependent synaptic plasticity in the 3-nitropropionic acid model of Huntington's disease.

Brain Research 2005 June 22
Huntington's disease (HD) is a neurodegenerative disorder characterized by involuntary choreiform movements, neuropsychiatric disturbances and cognitive decline. The hyperkinetic phenomenology has commonly been attributed to a disturbance of the basal ganglia function, mainly the neostriatum, but its pathophysiology mechanisms remain unclear. Activity-dependent long-term changes in synaptic efficacy, such as long-term potentiation (LTP) and long-term depression (LTD), are widely considered to be the cellular models for acquisition and storage of information in neuronal networks. Both LTP and LTD have been described at the corticostriatal pathway and they might be probably involved not only in physiological motor behavior processing but also in disease states affecting that pathway. Systemic injection of 3-nitropropionic acid (3-NP) induces excitotoxic striatal lesions and abnormal movements in rodents, resembling those seen in HD. We examined synaptic plasticity in dorsolateral striatum slices prepared from both control and 3-NP-treated rats by recording extracellular field potentials. Our results reinforce the idea that both forms of activity-dependent synaptic plasticity can be recorded at the dorsolateral region of striatum by the same stimulating protocol in control rats and suggest that 3-NP-induced striatal lesions may be associated with suppression of LTD expression in the sensorimotor striatum.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app