Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Simulated hand-assisted laparoscopic surgery (HALS) in microgravity.

INTRODUCTION: Previous simulation and porcine experiments aboard the reduced gravity program KC-135 turbojet have demonstrated that microgravity surgery is feasible. Ideally, surgical care in spaceflight will incorporate recent advances in care while remaining easy enough for a crew medical officer (CMO) lacking surgical proficiency or extensive surgical experience to perform. As a minimally invasive surgical technique, hand-assisted laparoscopic surgery (HALS) benefits the patient via smaller incisions, less pain, and faster recovery than traditional open surgery. HALS also helps less experienced laparoscopic surgeons perform laparoscopic surgery.

METHODS: An inexpensive inanimate surgical simulator was constructed to evaluate the usefulness of HALS in microgravity. This simulator was utilized during brief periods of microgravity provided by parabolic flight on the KC-135. The simulator was successfully used by both a physician-astronaut and an experienced laparoscopic surgeon. Task completion included simulated surgery with exploration of the intestines and ligation of the appendix.

RESULTS: Simulated HALS was successfully performed in microgravity. HALS effectively contained operative equipment and small amounts of introduced fluids within the simulated abdominal cavity. Astronaut and surgeon experience suggest that HALS could facilitate minimally invasive surgery (MIS) in microgravity.

DISCUSSION: HALS holds promise as a surgical approach in microgravity, particularly as space travel extends beyond low earth orbit. HALS provides the benefits of MIS, facilitates MIS surgery by less surgically proficient or experienced CMOs, and contains equipment and fluid within the operative field. Simulation provides an easy, cost-effective platform to evaluate medical technology for space flight as well as a method to train CMOs on-orbit.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app